CSSE 220 Day 11

Generic types
Paint design




Announcements

v

Please sit with your Paint project partner

Solutions to HW6 written problems and DotsUML should
be in the usual place on ANGEL:
Lessons > Assignments > Solutions

v

v

Today:

> Statics revisited

- Compositing

- Generic types in Java.

- Meet your Paint partner, finish your UML diagram
and work on your IEP, both due Friday. 5pm.

Questions on BallWorlds? Exam?

v




Static

» Please answer quiz questions 1 and 2
» Demo

» Do Quiz questions 3 and 4




Returning Multiple Values From a
Method

» In Python we could simply write
return X,y

» In C, we could pass pointers to variables and
change what they pointed to.

» What can we do in Java?

» This is a simple example of what is called the
Composite Pattern.
The returned value is a composition of two or
more values that may be unrelated other than
by the need to be returned from a function




Generics

» We really want our algorithms to operate on
, without having to re-write
the whole method.

» In Java, we can do this two ways:
- Use inheritance (pre-Java 1.5, a bit clunky)
- Use Generics (newer, nicer)




Using Inheritance in Java 1.4

ArrayList list = new ArrayList();

list.add(new Integer(3)); // 3 needs to be boxed
list.add("hello");

Integer temp = (Integer)list.get(0); //casting

int num = temp.intValue(); // unboxing

//int num = list.get(0); // | wish this worked!

Problems?

Casting, boxing and unboxing are a pain in the neck!
We have no control over the type of what goes in! (which

means we should check for compatibility using instanceof
to avoid ClassCastExceptions)




Using Inheritance in Java 1.5

ArrayList list = new ArrayList();

list.add(3); //auto-boxed to an Integer
list.add("hello");

int num = (Integer)list.get(0); // auto-unboxed
int num2 = (Integer)list.get(1) // Class—cast exception!
//int num = list.get(0); // still doesn’t work

Problems?
Casting is still a pain in the neck!
At least auto-boxing relieves some of the pain!

We still have no control over the type of what goes in!




Using Generics in Java 1.5

ArrayList<Integer> list = new ArrayList<Integer>();
list.add(3);

//list.add("hello"); // now a compile-time error
int num = list.get(0); // I’'m happy this works!

Problems?
Casting? Not needed!
Mixed types? Caught at compile time!




Creating code with Generics

» To use generics, use the type in a parameter.
» Example showing:

> The use of a type in a class
> Various places where the type parameter can be used:
public class SomeClass<E> {

public E someMethod(E param) {
E retvalue = 2 * param;

return retValue;

}

}

» Unfortunately, this example doesn’t work, since we can’t
multiply 2 by an unknown, possibly non-numeric type.

» Do LeechHome quiz question




Going further

» What if | have a method that operates on an ArrayList
of Vehicles, but | want to pass an ArrayList of Trucks?
» Intuitively, this should work, but Java doesn’t allow it,
since it couldn’t catch errors until runtime.
» Solution? In the method declaration, use
with :
» public void
processVehicle(ArrayList<? extends Vehicle> list) {
- for (Vehicle v : list) { ... }




Type erasure

» At compile time, the generics are replaced
with the types used

» If there are bounds, it uses them and inserts
the proper casts




Some Limitations

» Can’t use primitives as types

- No int, need to use Integer
» Can’t instantiate a typ
- What is E? It could even be an aDstre ass; this
wouldn’t make sense!
» Can’t make generic array w
> Naive solution: use typecasts:
- E[] ar = (E[])(new Object[17])

- This gives a compiler warning
- Better solution: use ArrayList<E>




How could generics have helped
BigRational?
» Check out the demo.




java.lang

Interface Comparable<T>

Tvpe Parameters:
T - the type of objects that this object may be compared to

» Any class that implements Comparable contracts to provide a
compareTo method.

Method Detail String is a Comparable class.
If it did not already have a compareTo
compareTo method, how would you write it?

int compareTo (I o)

Compares this object with the specified object for order. Eeturns a negative integer, zero, or a
positive integer as this object is less than, equal to, or greater than the specified object.

» Therefore, we can write generic methods on Comparable
objects. For example, in the Arrays class:

=tatic wToid

gort (Cbject[] a, int fromlindex, int tolndex)

Sorts the specified range of the specified array of objects into ascending order,
according to the natural ordering of its elements.




Example of using Arrays.sort

import java.util_Arrays;
public class StringSort {

public static void main(String[] args) {
String [] toons = {"Mickey", "Minnie", "Donald",
"Pluto', "'Goofy"};
Arrays.sort(toons);

for (String s:toons) Output:

System.out.printin(s);
3 Donald

} Gooty
Mickey
Minnie
Pluto




Project Time




